MakeItFrom.com
Menu (ESC)

EN 1.7380 Steel vs. EN 1.8819 Steel

Both EN 1.7380 steel and EN 1.8819 steel are iron alloys. They have a very high 97% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.7380 steel and the bottom bar is EN 1.8819 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 170
130
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 19 to 20
27
Fatigue Strength, MPa 200 to 230
200
Impact Strength: V-Notched Charpy, J 31 to 35
49
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 74
73
Shear Strength, MPa 330 to 350
280
Tensile Strength: Ultimate (UTS), MPa 540 to 550
440
Tensile Strength: Yield (Proof), MPa 290 to 330
270

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Maximum Temperature: Mechanical, °C 460
400
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 39
48
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 3.8
2.4
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.8
1.6
Embodied Energy, MJ/kg 23
21
Embodied Water, L/kg 59
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 98
100
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 280
190
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 19 to 20
16
Strength to Weight: Bending, points 19
16
Thermal Diffusivity, mm2/s 11
13
Thermal Shock Resistance, points 15 to 16
13

Alloy Composition

Aluminum (Al), % 0
0.015 to 0.034
Carbon (C), % 0.080 to 0.14
0 to 0.15
Chromium (Cr), % 2.0 to 2.5
0 to 0.35
Copper (Cu), % 0 to 0.3
0 to 0.6
Iron (Fe), % 94.6 to 96.6
95.9 to 99.985
Manganese (Mn), % 0.4 to 0.8
0 to 1.6
Molybdenum (Mo), % 0.9 to 1.1
0 to 0.13
Nickel (Ni), % 0
0 to 0.35
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0 to 0.012
0 to 0.017
Phosphorus (P), % 0 to 0.020
0 to 0.030
Silicon (Si), % 0 to 0.5
0 to 0.55
Sulfur (S), % 0 to 0.010
0 to 0.025
Titanium (Ti), % 0
0 to 0.060
Vanadium (V), % 0
0 to 0.1