MakeItFrom.com
Menu (ESC)

EN 1.7380 Steel vs. CC764S Brass

EN 1.7380 steel belongs to the iron alloys classification, while CC764S brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.7380 steel and the bottom bar is CC764S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 170
160
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 19 to 20
15
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 74
41
Tensile Strength: Ultimate (UTS), MPa 540 to 550
680
Tensile Strength: Yield (Proof), MPa 290 to 330
290

Thermal Properties

Latent Heat of Fusion, J/g 260
180
Maximum Temperature: Mechanical, °C 460
130
Melting Completion (Liquidus), °C 1470
850
Melting Onset (Solidus), °C 1430
810
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 39
94
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
32
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
36

Otherwise Unclassified Properties

Base Metal Price, % relative 3.8
23
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 1.8
2.9
Embodied Energy, MJ/kg 23
49
Embodied Water, L/kg 59
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 98
80
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 280
390
Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 19 to 20
24
Strength to Weight: Bending, points 19
22
Thermal Diffusivity, mm2/s 11
30
Thermal Shock Resistance, points 15 to 16
22

Alloy Composition

Aluminum (Al), % 0
1.0 to 3.0
Antimony (Sb), % 0
0 to 0.050
Carbon (C), % 0.080 to 0.14
0
Chromium (Cr), % 2.0 to 2.5
0
Copper (Cu), % 0 to 0.3
52 to 66
Iron (Fe), % 94.6 to 96.6
0.5 to 2.5
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0.4 to 0.8
0.3 to 4.0
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0
0 to 3.0
Nitrogen (N), % 0 to 0.012
0
Phosphorus (P), % 0 to 0.020
0 to 0.030
Silicon (Si), % 0 to 0.5
0 to 0.1
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.3
Zinc (Zn), % 0
20.7 to 50.2