MakeItFrom.com
Menu (ESC)

EN 1.7380 Steel vs. Grade Ti-Pd18 Titanium

EN 1.7380 steel belongs to the iron alloys classification, while grade Ti-Pd18 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.7380 steel and the bottom bar is grade Ti-Pd18 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 170
320
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 19 to 20
17
Fatigue Strength, MPa 200 to 230
350
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 74
40
Tensile Strength: Ultimate (UTS), MPa 540 to 550
710
Tensile Strength: Yield (Proof), MPa 290 to 330
540

Thermal Properties

Latent Heat of Fusion, J/g 260
410
Maximum Temperature: Mechanical, °C 460
330
Melting Completion (Liquidus), °C 1470
1640
Melting Onset (Solidus), °C 1430
1590
Specific Heat Capacity, J/kg-K 470
550
Thermal Conductivity, W/m-K 39
8.2
Thermal Expansion, µm/m-K 13
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
2.7

Otherwise Unclassified Properties

Density, g/cm3 7.9
4.5
Embodied Carbon, kg CO2/kg material 1.8
41
Embodied Energy, MJ/kg 23
670
Embodied Water, L/kg 59
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 98
110
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 280
1380
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 19 to 20
44
Strength to Weight: Bending, points 19
39
Thermal Diffusivity, mm2/s 11
3.3
Thermal Shock Resistance, points 15 to 16
52

Alloy Composition

Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0.080 to 0.14
0 to 0.1
Chromium (Cr), % 2.0 to 2.5
0
Copper (Cu), % 0 to 0.3
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 94.6 to 96.6
0 to 0.25
Manganese (Mn), % 0.4 to 0.8
0
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0
0 to 0.050
Nitrogen (N), % 0 to 0.012
0
Oxygen (O), % 0
0 to 0.15
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
92.5 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4