MakeItFrom.com
Menu (ESC)

EN 1.7380 Steel vs. SAE-AISI 1055 Steel

Both EN 1.7380 steel and SAE-AISI 1055 steel are iron alloys. They have a very high 96% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.7380 steel and the bottom bar is SAE-AISI 1055 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 170
220
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 19 to 20
11 to 14
Fatigue Strength, MPa 200 to 230
260 to 390
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 74
72
Shear Strength, MPa 330 to 350
440 to 450
Tensile Strength: Ultimate (UTS), MPa 540 to 550
730 to 750
Tensile Strength: Yield (Proof), MPa 290 to 330
400 to 630

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Maximum Temperature: Mechanical, °C 460
400
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 39
51
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
11
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
12

Otherwise Unclassified Properties

Base Metal Price, % relative 3.8
1.8
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.8
1.4
Embodied Energy, MJ/kg 23
18
Embodied Water, L/kg 59
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 98
80 to 85
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 280
440 to 1070
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 19 to 20
26
Strength to Weight: Bending, points 19
23
Thermal Diffusivity, mm2/s 11
14
Thermal Shock Resistance, points 15 to 16
23 to 24

Alloy Composition

Carbon (C), % 0.080 to 0.14
0.5 to 0.6
Chromium (Cr), % 2.0 to 2.5
0
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 94.6 to 96.6
98.4 to 98.9
Manganese (Mn), % 0.4 to 0.8
0.6 to 0.9
Molybdenum (Mo), % 0.9 to 1.1
0
Nitrogen (N), % 0 to 0.012
0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.010
0 to 0.050