MakeItFrom.com
Menu (ESC)

EN 1.7380 Steel vs. C32000 Brass

EN 1.7380 steel belongs to the iron alloys classification, while C32000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.7380 steel and the bottom bar is C32000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 19 to 20
6.8 to 29
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
41
Shear Strength, MPa 330 to 350
180 to 280
Tensile Strength: Ultimate (UTS), MPa 540 to 550
270 to 470
Tensile Strength: Yield (Proof), MPa 290 to 330
78 to 390

Thermal Properties

Latent Heat of Fusion, J/g 260
190
Maximum Temperature: Mechanical, °C 460
170
Melting Completion (Liquidus), °C 1470
1020
Melting Onset (Solidus), °C 1430
990
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 39
160
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
36
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
37

Otherwise Unclassified Properties

Base Metal Price, % relative 3.8
28
Density, g/cm3 7.9
8.7
Embodied Carbon, kg CO2/kg material 1.8
2.6
Embodied Energy, MJ/kg 23
42
Embodied Water, L/kg 59
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 98
30 to 59
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 280
28 to 680
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 19 to 20
8.8 to 15
Strength to Weight: Bending, points 19
11 to 16
Thermal Diffusivity, mm2/s 11
47
Thermal Shock Resistance, points 15 to 16
9.5 to 16

Alloy Composition

Carbon (C), % 0.080 to 0.14
0
Chromium (Cr), % 2.0 to 2.5
0
Copper (Cu), % 0 to 0.3
83.5 to 86.5
Iron (Fe), % 94.6 to 96.6
0 to 0.1
Lead (Pb), % 0
1.5 to 2.2
Manganese (Mn), % 0.4 to 0.8
0
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0
0 to 0.25
Nitrogen (N), % 0 to 0.012
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Zinc (Zn), % 0
10.6 to 15
Residuals, % 0
0 to 0.4