MakeItFrom.com
Menu (ESC)

EN 1.7380 Steel vs. C60800 Bronze

EN 1.7380 steel belongs to the iron alloys classification, while C60800 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.7380 steel and the bottom bar is C60800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 19 to 20
55
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
46
Shear Strength, MPa 330 to 350
290
Tensile Strength: Ultimate (UTS), MPa 540 to 550
390
Tensile Strength: Yield (Proof), MPa 290 to 330
150

Thermal Properties

Latent Heat of Fusion, J/g 260
220
Maximum Temperature: Mechanical, °C 460
210
Melting Completion (Liquidus), °C 1470
1060
Melting Onset (Solidus), °C 1430
1050
Specific Heat Capacity, J/kg-K 470
410
Thermal Conductivity, W/m-K 39
80
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
17
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
18

Otherwise Unclassified Properties

Base Metal Price, % relative 3.8
29
Density, g/cm3 7.9
8.6
Embodied Carbon, kg CO2/kg material 1.8
2.9
Embodied Energy, MJ/kg 23
48
Embodied Water, L/kg 59
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 98
170
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 280
94
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 19 to 20
13
Strength to Weight: Bending, points 19
14
Thermal Diffusivity, mm2/s 11
23
Thermal Shock Resistance, points 15 to 16
14

Alloy Composition

Aluminum (Al), % 0
5.0 to 6.5
Arsenic (As), % 0
0.020 to 0.35
Carbon (C), % 0.080 to 0.14
0
Chromium (Cr), % 2.0 to 2.5
0
Copper (Cu), % 0 to 0.3
92.5 to 95
Iron (Fe), % 94.6 to 96.6
0 to 0.1
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0.4 to 0.8
0
Molybdenum (Mo), % 0.9 to 1.1
0
Nitrogen (N), % 0 to 0.012
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Residuals, % 0
0 to 0.5