MakeItFrom.com
Menu (ESC)

EN 1.7380 Steel vs. C70700 Copper-nickel

EN 1.7380 steel belongs to the iron alloys classification, while C70700 copper-nickel belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.7380 steel and the bottom bar is C70700 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 170
73
Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 19 to 20
39
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
46
Shear Strength, MPa 330 to 350
220
Tensile Strength: Ultimate (UTS), MPa 540 to 550
320
Tensile Strength: Yield (Proof), MPa 290 to 330
110

Thermal Properties

Latent Heat of Fusion, J/g 260
220
Maximum Temperature: Mechanical, °C 460
220
Melting Completion (Liquidus), °C 1470
1120
Melting Onset (Solidus), °C 1430
1060
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 39
59
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
11
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
12

Otherwise Unclassified Properties

Base Metal Price, % relative 3.8
34
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 1.8
3.4
Embodied Energy, MJ/kg 23
52
Embodied Water, L/kg 59
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 98
100
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 280
51
Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 19 to 20
10
Strength to Weight: Bending, points 19
12
Thermal Diffusivity, mm2/s 11
17
Thermal Shock Resistance, points 15 to 16
12

Alloy Composition

Carbon (C), % 0.080 to 0.14
0
Chromium (Cr), % 2.0 to 2.5
0
Copper (Cu), % 0 to 0.3
88.5 to 90.5
Iron (Fe), % 94.6 to 96.6
0 to 0.050
Manganese (Mn), % 0.4 to 0.8
0 to 0.5
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0
9.5 to 10.5
Nitrogen (N), % 0 to 0.012
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Residuals, % 0
0 to 0.5