MakeItFrom.com
Menu (ESC)

EN 1.7380 Steel vs. C90500 Gun Metal

EN 1.7380 steel belongs to the iron alloys classification, while C90500 gun metal belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.7380 steel and the bottom bar is C90500 gun metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 19 to 20
20
Fatigue Strength, MPa 200 to 230
90
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
40
Tensile Strength: Ultimate (UTS), MPa 540 to 550
320
Tensile Strength: Yield (Proof), MPa 290 to 330
160

Thermal Properties

Latent Heat of Fusion, J/g 260
190
Maximum Temperature: Mechanical, °C 460
170
Melting Completion (Liquidus), °C 1470
1000
Melting Onset (Solidus), °C 1430
850
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 39
75
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
11
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
11

Otherwise Unclassified Properties

Base Metal Price, % relative 3.8
35
Density, g/cm3 7.9
8.7
Embodied Carbon, kg CO2/kg material 1.8
3.6
Embodied Energy, MJ/kg 23
59
Embodied Water, L/kg 59
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 98
54
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 280
110
Stiffness to Weight: Axial, points 13
6.9
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 19 to 20
10
Strength to Weight: Bending, points 19
12
Thermal Diffusivity, mm2/s 11
23
Thermal Shock Resistance, points 15 to 16
12

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0.080 to 0.14
0
Chromium (Cr), % 2.0 to 2.5
0
Copper (Cu), % 0 to 0.3
86 to 89
Iron (Fe), % 94.6 to 96.6
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0.4 to 0.8
0
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0
0 to 1.0
Nitrogen (N), % 0 to 0.012
0
Phosphorus (P), % 0 to 0.020
0 to 1.5
Silicon (Si), % 0 to 0.5
0 to 0.0050
Sulfur (S), % 0 to 0.010
0 to 0.050
Tin (Sn), % 0
9.0 to 11
Zinc (Zn), % 0
1.0 to 3.0
Residuals, % 0
0 to 0.3