MakeItFrom.com
Menu (ESC)

EN 1.7380 Steel vs. C96900 Copper-nickel

EN 1.7380 steel belongs to the iron alloys classification, while C96900 copper-nickel belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.7380 steel and the bottom bar is C96900 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 19 to 20
4.5
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
45
Tensile Strength: Ultimate (UTS), MPa 540 to 550
850
Tensile Strength: Yield (Proof), MPa 290 to 330
830

Thermal Properties

Latent Heat of Fusion, J/g 260
210
Maximum Temperature: Mechanical, °C 460
210
Melting Completion (Liquidus), °C 1470
1060
Melting Onset (Solidus), °C 1430
960
Specific Heat Capacity, J/kg-K 470
380
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 3.8
39
Density, g/cm3 7.9
8.8
Embodied Carbon, kg CO2/kg material 1.8
4.6
Embodied Energy, MJ/kg 23
72
Embodied Water, L/kg 59
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 98
38
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 280
2820
Stiffness to Weight: Axial, points 13
7.7
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 19 to 20
27
Strength to Weight: Bending, points 19
23
Thermal Shock Resistance, points 15 to 16
30

Alloy Composition

Carbon (C), % 0.080 to 0.14
0
Chromium (Cr), % 2.0 to 2.5
0
Copper (Cu), % 0 to 0.3
73.6 to 78
Iron (Fe), % 94.6 to 96.6
0 to 0.5
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0.4 to 0.8
0.050 to 0.3
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0
14.5 to 15.5
Niobium (Nb), % 0
0 to 0.1
Nitrogen (N), % 0 to 0.012
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 0.3
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
7.5 to 8.5
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5