MakeItFrom.com
Menu (ESC)

EN 1.7383 Steel vs. AWS ER90S-B3

Both EN 1.7383 steel and AWS ER90S-B3 are iron alloys. Their average alloy composition is basically identical. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.7383 steel and the bottom bar is AWS ER90S-B3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 20 to 23
19
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 74
73
Tensile Strength: Ultimate (UTS), MPa 560 to 610
690
Tensile Strength: Yield (Proof), MPa 300 to 400
620

Thermal Properties

Latent Heat of Fusion, J/g 260
260
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 39
40
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 3.9
4.1
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.8
1.8
Embodied Energy, MJ/kg 23
24
Embodied Water, L/kg 59
60

Common Calculations

PREN (Pitting Resistance) 5.6
6.0
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
130
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 420
1000
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 20 to 22
25
Strength to Weight: Bending, points 19 to 20
22
Thermal Diffusivity, mm2/s 11
11
Thermal Shock Resistance, points 16 to 18
20

Alloy Composition

Aluminum (Al), % 0 to 0.040
0
Carbon (C), % 0.080 to 0.15
0.070 to 0.12
Chromium (Cr), % 2.0 to 2.5
2.3 to 2.7
Copper (Cu), % 0 to 0.3
0 to 0.35
Iron (Fe), % 94.3 to 96.6
93.5 to 95.9
Manganese (Mn), % 0.4 to 0.8
0.4 to 0.7
Molybdenum (Mo), % 0.9 to 1.1
0.9 to 1.2
Nickel (Ni), % 0 to 0.3
0 to 0.2
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0 to 0.5
0.4 to 0.7
Sulfur (S), % 0 to 0.010
0 to 0.025
Residuals, % 0
0 to 0.5