MakeItFrom.com
Menu (ESC)

EN 1.7383 Steel vs. CC494K Bronze

EN 1.7383 steel belongs to the iron alloys classification, while CC494K bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.7383 steel and the bottom bar is CC494K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 180
67
Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 20 to 23
7.6
Poisson's Ratio 0.29
0.35
Shear Modulus, GPa 74
39
Tensile Strength: Ultimate (UTS), MPa 560 to 610
210
Tensile Strength: Yield (Proof), MPa 300 to 400
94

Thermal Properties

Latent Heat of Fusion, J/g 260
180
Maximum Temperature: Mechanical, °C 460
160
Melting Completion (Liquidus), °C 1470
970
Melting Onset (Solidus), °C 1430
890
Specific Heat Capacity, J/kg-K 470
360
Thermal Conductivity, W/m-K 39
63
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
16
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
16

Otherwise Unclassified Properties

Base Metal Price, % relative 3.9
31
Density, g/cm3 7.9
9.1
Embodied Carbon, kg CO2/kg material 1.8
3.1
Embodied Energy, MJ/kg 23
50
Embodied Water, L/kg 59
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
13
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 420
43
Stiffness to Weight: Axial, points 13
6.4
Stiffness to Weight: Bending, points 24
17
Strength to Weight: Axial, points 20 to 22
6.5
Strength to Weight: Bending, points 19 to 20
8.8
Thermal Diffusivity, mm2/s 11
19
Thermal Shock Resistance, points 16 to 18
7.8

Alloy Composition

Aluminum (Al), % 0 to 0.040
0 to 0.010
Antimony (Sb), % 0
0 to 0.5
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 2.0 to 2.5
0
Copper (Cu), % 0 to 0.3
78 to 87
Iron (Fe), % 94.3 to 96.6
0 to 0.25
Lead (Pb), % 0
8.0 to 10
Manganese (Mn), % 0.4 to 0.8
0 to 0.2
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.3
0 to 2.0
Phosphorus (P), % 0 to 0.025
0 to 0.1
Silicon (Si), % 0 to 0.5
0 to 0.010
Sulfur (S), % 0 to 0.010
0 to 0.1
Tin (Sn), % 0
4.0 to 6.0
Zinc (Zn), % 0
0 to 2.0