MakeItFrom.com
Menu (ESC)

EN 1.7383 Steel vs. CC765S Brass

EN 1.7383 steel belongs to the iron alloys classification, while CC765S brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.7383 steel and the bottom bar is CC765S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 180
130
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 20 to 23
21
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 74
42
Tensile Strength: Ultimate (UTS), MPa 560 to 610
540
Tensile Strength: Yield (Proof), MPa 300 to 400
220

Thermal Properties

Latent Heat of Fusion, J/g 260
180
Maximum Temperature: Mechanical, °C 460
140
Melting Completion (Liquidus), °C 1470
860
Melting Onset (Solidus), °C 1430
820
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 39
91
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
30
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
34

Otherwise Unclassified Properties

Base Metal Price, % relative 3.9
24
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 1.8
3.0
Embodied Energy, MJ/kg 23
51
Embodied Water, L/kg 59
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
90
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 420
220
Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 20 to 22
19
Strength to Weight: Bending, points 19 to 20
18
Thermal Diffusivity, mm2/s 11
28
Thermal Shock Resistance, points 16 to 18
17

Alloy Composition

Aluminum (Al), % 0 to 0.040
0.5 to 2.5
Antimony (Sb), % 0
0 to 0.080
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 2.0 to 2.5
0
Copper (Cu), % 0 to 0.3
51 to 65
Iron (Fe), % 94.3 to 96.6
0.5 to 2.0
Lead (Pb), % 0
0 to 0.5
Manganese (Mn), % 0.4 to 0.8
0.3 to 3.0
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.3
0 to 6.0
Phosphorus (P), % 0 to 0.025
0 to 0.030
Silicon (Si), % 0 to 0.5
0 to 0.1
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 1.0
Zinc (Zn), % 0
19.8 to 47.7