EN 1.7383 Steel vs. Grade 11 Titanium
EN 1.7383 steel belongs to the iron alloys classification, while grade 11 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.
For each property being compared, the top bar is EN 1.7383 steel and the bottom bar is grade 11 titanium.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 170 to 180 | |
120 |
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
110 |
Elongation at Break, % | 20 to 23 | |
29 |
Fatigue Strength, MPa | 210 to 270 | |
170 |
Poisson's Ratio | 0.29 | |
0.32 |
Shear Modulus, GPa | 74 | |
38 |
Shear Strength, MPa | 350 to 380 | |
200 |
Tensile Strength: Ultimate (UTS), MPa | 560 to 610 | |
310 |
Tensile Strength: Yield (Proof), MPa | 300 to 400 | |
230 |
Thermal Properties
Latent Heat of Fusion, J/g | 260 | |
420 |
Maximum Temperature: Mechanical, °C | 460 | |
320 |
Melting Completion (Liquidus), °C | 1470 | |
1660 |
Melting Onset (Solidus), °C | 1430 | |
1610 |
Specific Heat Capacity, J/kg-K | 470 | |
540 |
Thermal Conductivity, W/m-K | 39 | |
22 |
Thermal Expansion, µm/m-K | 13 | |
9.2 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.7 | |
3.7 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.8 | |
7.3 |
Otherwise Unclassified Properties
Density, g/cm3 | 7.9 | |
4.5 |
Embodied Carbon, kg CO2/kg material | 1.8 | |
47 |
Embodied Energy, MJ/kg | 23 | |
800 |
Embodied Water, L/kg | 59 | |
470 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 110 | |
81 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 240 to 420 | |
240 |
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 24 | |
35 |
Strength to Weight: Axial, points | 20 to 22 | |
19 |
Strength to Weight: Bending, points | 19 to 20 | |
22 |
Thermal Diffusivity, mm2/s | 11 | |
8.9 |
Thermal Shock Resistance, points | 16 to 18 | |
22 |
Alloy Composition
Aluminum (Al), % | 0 to 0.040 | |
0 |
Carbon (C), % | 0.080 to 0.15 | |
0 to 0.080 |
Chromium (Cr), % | 2.0 to 2.5 | |
0 |
Copper (Cu), % | 0 to 0.3 | |
0 |
Hydrogen (H), % | 0 | |
0 to 0.015 |
Iron (Fe), % | 94.3 to 96.6 | |
0 to 0.2 |
Manganese (Mn), % | 0.4 to 0.8 | |
0 |
Molybdenum (Mo), % | 0.9 to 1.1 | |
0 |
Nickel (Ni), % | 0 to 0.3 | |
0 |
Nitrogen (N), % | 0 | |
0 to 0.030 |
Oxygen (O), % | 0 | |
0 to 0.18 |
Palladium (Pd), % | 0 | |
0.12 to 0.25 |
Phosphorus (P), % | 0 to 0.025 | |
0 |
Silicon (Si), % | 0 to 0.5 | |
0 |
Sulfur (S), % | 0 to 0.010 | |
0 |
Titanium (Ti), % | 0 | |
98.8 to 99.88 |
Residuals, % | 0 | |
0 to 0.4 |