MakeItFrom.com
Menu (ESC)

EN 1.7383 Steel vs. Grade Ti-Pd8A Titanium

EN 1.7383 steel belongs to the iron alloys classification, while grade Ti-Pd8A titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.7383 steel and the bottom bar is grade Ti-Pd8A titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 180
200
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 20 to 23
13
Fatigue Strength, MPa 210 to 270
260
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 74
40
Tensile Strength: Ultimate (UTS), MPa 560 to 610
500
Tensile Strength: Yield (Proof), MPa 300 to 400
430

Thermal Properties

Latent Heat of Fusion, J/g 260
420
Maximum Temperature: Mechanical, °C 460
320
Melting Completion (Liquidus), °C 1470
1660
Melting Onset (Solidus), °C 1430
1610
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 39
21
Thermal Expansion, µm/m-K 13
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
3.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
6.9

Otherwise Unclassified Properties

Density, g/cm3 7.9
4.5
Embodied Carbon, kg CO2/kg material 1.8
49
Embodied Energy, MJ/kg 23
840
Embodied Water, L/kg 59
520

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
65
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 420
880
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 20 to 22
31
Strength to Weight: Bending, points 19 to 20
31
Thermal Diffusivity, mm2/s 11
8.6
Thermal Shock Resistance, points 16 to 18
39

Alloy Composition

Aluminum (Al), % 0 to 0.040
0
Carbon (C), % 0.080 to 0.15
0 to 0.1
Chromium (Cr), % 2.0 to 2.5
0
Copper (Cu), % 0 to 0.3
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 94.3 to 96.6
0 to 0.25
Manganese (Mn), % 0.4 to 0.8
0
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.3
0 to 0.050
Oxygen (O), % 0
0 to 0.4
Palladium (Pd), % 0
0.12 to 0.3
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
98.8 to 99.9
Residuals, % 0
0 to 0.4