MakeItFrom.com
Menu (ESC)

EN 1.7383 Steel vs. SAE-AISI 51B60 Steel

Both EN 1.7383 steel and SAE-AISI 51B60 steel are iron alloys. They have a very high 97% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.7383 steel and the bottom bar is SAE-AISI 51B60 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 180
200
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 20 to 23
12 to 21
Fatigue Strength, MPa 210 to 270
280 to 340
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 74
73
Shear Strength, MPa 350 to 380
390 to 420
Tensile Strength: Ultimate (UTS), MPa 560 to 610
660
Tensile Strength: Yield (Proof), MPa 300 to 400
400 to 550

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Maximum Temperature: Mechanical, °C 460
420
Melting Completion (Liquidus), °C 1470
1450
Melting Onset (Solidus), °C 1430
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 39
43
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 3.9
2.1
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.8
1.4
Embodied Energy, MJ/kg 23
19
Embodied Water, L/kg 59
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
73 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 420
420 to 800
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 20 to 22
23
Strength to Weight: Bending, points 19 to 20
22
Thermal Diffusivity, mm2/s 11
12
Thermal Shock Resistance, points 16 to 18
19

Alloy Composition

Aluminum (Al), % 0 to 0.040
0
Boron (B), % 0
0.00050 to 0.0030
Carbon (C), % 0.080 to 0.15
0.56 to 0.64
Chromium (Cr), % 2.0 to 2.5
0.7 to 0.9
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 94.3 to 96.6
97 to 97.8
Manganese (Mn), % 0.4 to 0.8
0.75 to 1.0
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.3
0
Phosphorus (P), % 0 to 0.025
0 to 0.035
Silicon (Si), % 0 to 0.5
0.15 to 0.35
Sulfur (S), % 0 to 0.010
0 to 0.040