MakeItFrom.com
Menu (ESC)

EN 1.7383 Steel vs. C19700 Copper

EN 1.7383 steel belongs to the iron alloys classification, while C19700 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.7383 steel and the bottom bar is C19700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 20 to 23
2.4 to 13
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
43
Shear Strength, MPa 350 to 380
240 to 300
Tensile Strength: Ultimate (UTS), MPa 560 to 610
400 to 530
Tensile Strength: Yield (Proof), MPa 300 to 400
330 to 520

Thermal Properties

Latent Heat of Fusion, J/g 260
210
Maximum Temperature: Mechanical, °C 460
200
Melting Completion (Liquidus), °C 1470
1090
Melting Onset (Solidus), °C 1430
1040
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 39
250
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
86 to 88
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
87 to 89

Otherwise Unclassified Properties

Base Metal Price, % relative 3.9
30
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 1.8
2.6
Embodied Energy, MJ/kg 23
41
Embodied Water, L/kg 59
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
12 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 420
460 to 1160
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 20 to 22
12 to 16
Strength to Weight: Bending, points 19 to 20
14 to 16
Thermal Diffusivity, mm2/s 11
73
Thermal Shock Resistance, points 16 to 18
14 to 19

Alloy Composition

Aluminum (Al), % 0 to 0.040
0
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 2.0 to 2.5
0
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 0 to 0.3
97.4 to 99.59
Iron (Fe), % 94.3 to 96.6
0.3 to 1.2
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.010 to 0.2
Manganese (Mn), % 0.4 to 0.8
0 to 0.050
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.3
0 to 0.050
Phosphorus (P), % 0 to 0.025
0.1 to 0.4
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.2