MakeItFrom.com
Menu (ESC)

EN 1.7383 Steel vs. C21000 Brass

EN 1.7383 steel belongs to the iron alloys classification, while C21000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.7383 steel and the bottom bar is C21000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 20 to 23
2.9 to 50
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
43
Shear Strength, MPa 350 to 380
180 to 280
Tensile Strength: Ultimate (UTS), MPa 560 to 610
240 to 450
Tensile Strength: Yield (Proof), MPa 300 to 400
69 to 440

Thermal Properties

Latent Heat of Fusion, J/g 260
200
Maximum Temperature: Mechanical, °C 460
190
Melting Completion (Liquidus), °C 1470
1070
Melting Onset (Solidus), °C 1430
1050
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 39
230
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
56
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
57

Otherwise Unclassified Properties

Base Metal Price, % relative 3.9
30
Density, g/cm3 7.9
8.8
Embodied Carbon, kg CO2/kg material 1.8
2.6
Embodied Energy, MJ/kg 23
42
Embodied Water, L/kg 59
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
13 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 420
21 to 830
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 20 to 22
7.4 to 14
Strength to Weight: Bending, points 19 to 20
9.6 to 15
Thermal Diffusivity, mm2/s 11
69
Thermal Shock Resistance, points 16 to 18
8.1 to 15

Alloy Composition

Aluminum (Al), % 0 to 0.040
0
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 2.0 to 2.5
0
Copper (Cu), % 0 to 0.3
94 to 96
Iron (Fe), % 94.3 to 96.6
0 to 0.050
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0.4 to 0.8
0
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.3
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Zinc (Zn), % 0
3.7 to 6.0
Residuals, % 0
0 to 0.2