MakeItFrom.com
Menu (ESC)

EN 1.7383 Steel vs. C34200 Brass

EN 1.7383 steel belongs to the iron alloys classification, while C34200 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.7383 steel and the bottom bar is C34200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 20 to 23
3.0 to 17
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 74
40
Shear Strength, MPa 350 to 380
230 to 360
Tensile Strength: Ultimate (UTS), MPa 560 to 610
370 to 650
Tensile Strength: Yield (Proof), MPa 300 to 400
150 to 420

Thermal Properties

Latent Heat of Fusion, J/g 260
170
Maximum Temperature: Mechanical, °C 460
120
Melting Completion (Liquidus), °C 1470
910
Melting Onset (Solidus), °C 1430
890
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 39
120
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
26
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
29

Otherwise Unclassified Properties

Base Metal Price, % relative 3.9
24
Density, g/cm3 7.9
8.2
Embodied Carbon, kg CO2/kg material 1.8
2.6
Embodied Energy, MJ/kg 23
45
Embodied Water, L/kg 59
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
9.0 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 420
110 to 870
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 20 to 22
13 to 22
Strength to Weight: Bending, points 19 to 20
14 to 20
Thermal Diffusivity, mm2/s 11
37
Thermal Shock Resistance, points 16 to 18
12 to 22

Alloy Composition

Aluminum (Al), % 0 to 0.040
0
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 2.0 to 2.5
0
Copper (Cu), % 0 to 0.3
62 to 65
Iron (Fe), % 94.3 to 96.6
0 to 0.1
Lead (Pb), % 0
1.5 to 2.5
Manganese (Mn), % 0.4 to 0.8
0
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.3
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Zinc (Zn), % 0
32 to 36.5
Residuals, % 0
0 to 0.4