MakeItFrom.com
Menu (ESC)

EN 1.7383 Steel vs. C72150 Copper-nickel

EN 1.7383 steel belongs to the iron alloys classification, while C72150 copper-nickel belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.7383 steel and the bottom bar is C72150 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 180
99
Elastic (Young's, Tensile) Modulus, GPa 190
150
Elongation at Break, % 20 to 23
29
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
55
Shear Strength, MPa 350 to 380
320
Tensile Strength: Ultimate (UTS), MPa 560 to 610
490
Tensile Strength: Yield (Proof), MPa 300 to 400
210

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Maximum Temperature: Mechanical, °C 460
600
Melting Completion (Liquidus), °C 1470
1210
Melting Onset (Solidus), °C 1430
1250
Specific Heat Capacity, J/kg-K 470
410
Thermal Conductivity, W/m-K 39
22
Thermal Expansion, µm/m-K 13
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
3.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
3.6

Otherwise Unclassified Properties

Base Metal Price, % relative 3.9
45
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 1.8
6.1
Embodied Energy, MJ/kg 23
88
Embodied Water, L/kg 59
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
120
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 420
150
Stiffness to Weight: Axial, points 13
9.1
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 20 to 22
15
Strength to Weight: Bending, points 19 to 20
15
Thermal Diffusivity, mm2/s 11
6.0
Thermal Shock Resistance, points 16 to 18
18

Alloy Composition

Aluminum (Al), % 0 to 0.040
0
Carbon (C), % 0.080 to 0.15
0 to 0.1
Chromium (Cr), % 2.0 to 2.5
0
Copper (Cu), % 0 to 0.3
52.5 to 57
Iron (Fe), % 94.3 to 96.6
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.4 to 0.8
0 to 0.050
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.3
43 to 46
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0 to 0.010
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.5