MakeItFrom.com
Menu (ESC)

EN 1.7383 Steel vs. C96300 Copper-nickel

EN 1.7383 steel belongs to the iron alloys classification, while C96300 copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.7383 steel and the bottom bar is C96300 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 180
150
Elastic (Young's, Tensile) Modulus, GPa 190
130
Elongation at Break, % 20 to 23
11
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
49
Tensile Strength: Ultimate (UTS), MPa 560 to 610
580
Tensile Strength: Yield (Proof), MPa 300 to 400
430

Thermal Properties

Latent Heat of Fusion, J/g 260
230
Maximum Temperature: Mechanical, °C 460
240
Melting Completion (Liquidus), °C 1470
1200
Melting Onset (Solidus), °C 1430
1150
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 39
37
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
6.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
6.1

Otherwise Unclassified Properties

Base Metal Price, % relative 3.9
42
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 1.8
5.1
Embodied Energy, MJ/kg 23
76
Embodied Water, L/kg 59
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
59
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 420
720
Stiffness to Weight: Axial, points 13
8.2
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 20 to 22
18
Strength to Weight: Bending, points 19 to 20
17
Thermal Diffusivity, mm2/s 11
10
Thermal Shock Resistance, points 16 to 18
20

Alloy Composition

Aluminum (Al), % 0 to 0.040
0
Carbon (C), % 0.080 to 0.15
0 to 0.15
Chromium (Cr), % 2.0 to 2.5
0
Copper (Cu), % 0 to 0.3
72.3 to 80.8
Iron (Fe), % 94.3 to 96.6
0.5 to 1.5
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0.4 to 0.8
0.25 to 1.5
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.3
18 to 22
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0 to 0.025
0 to 0.020
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0 to 0.010
0 to 0.020
Residuals, % 0
0 to 0.5