MakeItFrom.com
Menu (ESC)

EN 1.7383 Steel vs. N06920 Nickel

EN 1.7383 steel belongs to the iron alloys classification, while N06920 nickel belongs to the nickel alloys. They have a modest 23% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.7383 steel and the bottom bar is N06920 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 20 to 23
39
Fatigue Strength, MPa 210 to 270
220
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
82
Shear Strength, MPa 350 to 380
500
Tensile Strength: Ultimate (UTS), MPa 560 to 610
730
Tensile Strength: Yield (Proof), MPa 300 to 400
270

Thermal Properties

Latent Heat of Fusion, J/g 260
320
Maximum Temperature: Mechanical, °C 460
990
Melting Completion (Liquidus), °C 1470
1500
Melting Onset (Solidus), °C 1430
1440
Specific Heat Capacity, J/kg-K 470
440
Thermal Conductivity, W/m-K 39
11
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 3.9
55
Density, g/cm3 7.9
8.6
Embodied Carbon, kg CO2/kg material 1.8
9.4
Embodied Energy, MJ/kg 23
130
Embodied Water, L/kg 59
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
230
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 420
180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
23
Strength to Weight: Axial, points 20 to 22
24
Strength to Weight: Bending, points 19 to 20
21
Thermal Diffusivity, mm2/s 11
2.8
Thermal Shock Resistance, points 16 to 18
19

Alloy Composition

Aluminum (Al), % 0 to 0.040
0
Carbon (C), % 0.080 to 0.15
0 to 0.030
Chromium (Cr), % 2.0 to 2.5
20.5 to 23
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 94.3 to 96.6
17 to 20
Manganese (Mn), % 0.4 to 0.8
0 to 1.0
Molybdenum (Mo), % 0.9 to 1.1
8.0 to 10
Nickel (Ni), % 0 to 0.3
36.9 to 53.5
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030
Tungsten (W), % 0
1.0 to 3.0