MakeItFrom.com
Menu (ESC)

EN 1.7383 Steel vs. S33550 Stainless Steel

Both EN 1.7383 steel and S33550 stainless steel are iron alloys. They have 57% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.7383 steel and the bottom bar is S33550 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 180
190
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 20 to 23
40
Fatigue Strength, MPa 210 to 270
270
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 74
79
Shear Strength, MPa 350 to 380
470
Tensile Strength: Ultimate (UTS), MPa 560 to 610
680
Tensile Strength: Yield (Proof), MPa 300 to 400
310

Thermal Properties

Latent Heat of Fusion, J/g 260
300
Maximum Temperature: Mechanical, °C 460
1100
Melting Completion (Liquidus), °C 1470
1400
Melting Onset (Solidus), °C 1430
1360
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 39
15
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 3.9
24
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.8
4.3
Embodied Energy, MJ/kg 23
61
Embodied Water, L/kg 59
190

Common Calculations

PREN (Pitting Resistance) 5.6
30
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
220
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 420
250
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 20 to 22
24
Strength to Weight: Bending, points 19 to 20
22
Thermal Diffusivity, mm2/s 11
3.9
Thermal Shock Resistance, points 16 to 18
15

Alloy Composition

Aluminum (Al), % 0 to 0.040
0
Carbon (C), % 0.080 to 0.15
0.040 to 0.1
Cerium (Ce), % 0
0.025 to 0.070
Chromium (Cr), % 2.0 to 2.5
25 to 28
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 94.3 to 96.6
48.8 to 58.2
Lanthanum (La), % 0
0.025 to 0.070
Manganese (Mn), % 0.4 to 0.8
0 to 1.5
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.3
16.5 to 20
Niobium (Nb), % 0
0.050 to 0.15
Nitrogen (N), % 0
0.18 to 0.25
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030