EN 1.7386 Steel vs. AWS ER90S-B9
Both EN 1.7386 steel and AWS ER90S-B9 are iron alloys. They have a very high 99% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.
For each property being compared, the top bar is EN 1.7386 steel and the bottom bar is AWS ER90S-B9.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
190 |
Elongation at Break, % | 18 to 21 | |
18 |
Poisson's Ratio | 0.28 | |
0.28 |
Shear Modulus, GPa | 75 | |
75 |
Tensile Strength: Ultimate (UTS), MPa | 550 to 670 | |
690 |
Tensile Strength: Yield (Proof), MPa | 240 to 440 | |
470 |
Thermal Properties
Latent Heat of Fusion, J/g | 270 | |
270 |
Melting Completion (Liquidus), °C | 1450 | |
1450 |
Melting Onset (Solidus), °C | 1410 | |
1410 |
Specific Heat Capacity, J/kg-K | 480 | |
470 |
Thermal Conductivity, W/m-K | 26 | |
25 |
Thermal Expansion, µm/m-K | 13 | |
13 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 9.0 | |
7.0 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 10 | |
8.1 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 6.5 | |
7.0 |
Density, g/cm3 | 7.8 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 2.0 | |
2.6 |
Embodied Energy, MJ/kg | 28 | |
37 |
Embodied Water, L/kg | 88 | |
91 |
Common Calculations
PREN (Pitting Resistance) | 12 | |
13 |
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 92 to 110 | |
110 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 150 to 490 | |
570 |
Stiffness to Weight: Axial, points | 14 | |
14 |
Stiffness to Weight: Bending, points | 25 | |
25 |
Strength to Weight: Axial, points | 20 to 24 | |
25 |
Strength to Weight: Bending, points | 19 to 22 | |
22 |
Thermal Diffusivity, mm2/s | 6.9 | |
6.9 |
Thermal Shock Resistance, points | 15 to 18 | |
19 |
Alloy Composition
Aluminum (Al), % | 0 to 0.040 | |
0 to 0.040 |
Carbon (C), % | 0.080 to 0.15 | |
0.070 to 0.13 |
Chromium (Cr), % | 8.0 to 10 | |
8.0 to 10.5 |
Copper (Cu), % | 0 to 0.3 | |
0 to 0.2 |
Iron (Fe), % | 86.8 to 90.5 | |
84.4 to 90.7 |
Manganese (Mn), % | 0.3 to 0.6 | |
0 to 1.2 |
Molybdenum (Mo), % | 0.9 to 1.1 | |
0.85 to 1.2 |
Nickel (Ni), % | 0 | |
0 to 0.8 |
Niobium (Nb), % | 0 | |
0.020 to 0.1 |
Nitrogen (N), % | 0 | |
0.030 to 0.070 |
Phosphorus (P), % | 0 to 0.025 | |
0 to 0.010 |
Silicon (Si), % | 0.25 to 1.0 | |
0.15 to 0.5 |
Sulfur (S), % | 0 to 0.010 | |
0 to 0.010 |
Vanadium (V), % | 0 | |
0.15 to 0.3 |
Residuals, % | 0 | |
0 to 0.5 |