MakeItFrom.com
Menu (ESC)

EN 1.7386 Steel vs. CC331G Bronze

EN 1.7386 steel belongs to the iron alloys classification, while CC331G bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.7386 steel and the bottom bar is CC331G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 200
140
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 18 to 21
20
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
43
Tensile Strength: Ultimate (UTS), MPa 550 to 670
620
Tensile Strength: Yield (Proof), MPa 240 to 440
240

Thermal Properties

Latent Heat of Fusion, J/g 270
230
Maximum Temperature: Mechanical, °C 600
220
Melting Completion (Liquidus), °C 1450
1060
Melting Onset (Solidus), °C 1410
1000
Specific Heat Capacity, J/kg-K 480
440
Thermal Conductivity, W/m-K 26
61
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
13
Electrical Conductivity: Equal Weight (Specific), % IACS 10
14

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
28
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 2.0
3.2
Embodied Energy, MJ/kg 28
53
Embodied Water, L/kg 88
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92 to 110
97
Resilience: Unit (Modulus of Resilience), kJ/m3 150 to 490
250
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 20 to 24
21
Strength to Weight: Bending, points 19 to 22
19
Thermal Diffusivity, mm2/s 6.9
17
Thermal Shock Resistance, points 15 to 18
22

Alloy Composition

Aluminum (Al), % 0 to 0.040
8.5 to 10.5
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 8.0 to 10
0
Copper (Cu), % 0 to 0.3
83 to 86.5
Iron (Fe), % 86.8 to 90.5
1.5 to 3.5
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0.3 to 0.6
0 to 1.0
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0
0 to 1.5
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.25 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.5