MakeItFrom.com
Menu (ESC)

EN 1.7386 Steel vs. CC492K Bronze

EN 1.7386 steel belongs to the iron alloys classification, while CC492K bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.7386 steel and the bottom bar is CC492K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 200
78
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 18 to 21
14
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
40
Tensile Strength: Ultimate (UTS), MPa 550 to 670
280
Tensile Strength: Yield (Proof), MPa 240 to 440
150

Thermal Properties

Latent Heat of Fusion, J/g 270
190
Maximum Temperature: Mechanical, °C 600
170
Melting Completion (Liquidus), °C 1450
1000
Melting Onset (Solidus), °C 1410
900
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 26
73
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
13
Electrical Conductivity: Equal Weight (Specific), % IACS 10
13

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
33
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 2.0
3.4
Embodied Energy, MJ/kg 28
54
Embodied Water, L/kg 88
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92 to 110
33
Resilience: Unit (Modulus of Resilience), kJ/m3 150 to 490
100
Stiffness to Weight: Axial, points 14
6.8
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 20 to 24
8.7
Strength to Weight: Bending, points 19 to 22
11
Thermal Diffusivity, mm2/s 6.9
23
Thermal Shock Resistance, points 15 to 18
10

Alloy Composition

Aluminum (Al), % 0 to 0.040
0 to 0.010
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 8.0 to 10
0
Copper (Cu), % 0 to 0.3
83 to 89
Iron (Fe), % 86.8 to 90.5
0 to 0.2
Lead (Pb), % 0
2.5 to 3.5
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0
0 to 2.0
Phosphorus (P), % 0 to 0.025
0 to 0.1
Silicon (Si), % 0.25 to 1.0
0 to 0.010
Sulfur (S), % 0 to 0.010
0 to 0.1
Tin (Sn), % 0
6.0 to 8.0
Zinc (Zn), % 0
1.5 to 3.0