MakeItFrom.com
Menu (ESC)

EN 1.7386 Steel vs. CC496K Bronze

EN 1.7386 steel belongs to the iron alloys classification, while CC496K bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.7386 steel and the bottom bar is CC496K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 200
72
Elastic (Young's, Tensile) Modulus, GPa 190
97
Elongation at Break, % 18 to 21
8.6
Poisson's Ratio 0.28
0.35
Shear Modulus, GPa 75
36
Tensile Strength: Ultimate (UTS), MPa 550 to 670
210
Tensile Strength: Yield (Proof), MPa 240 to 440
99

Thermal Properties

Latent Heat of Fusion, J/g 270
170
Maximum Temperature: Mechanical, °C 600
140
Melting Completion (Liquidus), °C 1450
900
Melting Onset (Solidus), °C 1410
820
Specific Heat Capacity, J/kg-K 480
340
Thermal Conductivity, W/m-K 26
52
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
11
Electrical Conductivity: Equal Weight (Specific), % IACS 10
11

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
31
Density, g/cm3 7.8
9.2
Embodied Carbon, kg CO2/kg material 2.0
3.3
Embodied Energy, MJ/kg 28
52
Embodied Water, L/kg 88
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92 to 110
15
Resilience: Unit (Modulus of Resilience), kJ/m3 150 to 490
50
Stiffness to Weight: Axial, points 14
5.9
Stiffness to Weight: Bending, points 25
17
Strength to Weight: Axial, points 20 to 24
6.5
Strength to Weight: Bending, points 19 to 22
8.6
Thermal Diffusivity, mm2/s 6.9
17
Thermal Shock Resistance, points 15 to 18
8.1

Alloy Composition

Aluminum (Al), % 0 to 0.040
0 to 0.010
Antimony (Sb), % 0
0 to 0.5
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 8.0 to 10
0
Copper (Cu), % 0 to 0.3
72 to 79.5
Iron (Fe), % 86.8 to 90.5
0 to 0.25
Lead (Pb), % 0
13 to 17
Manganese (Mn), % 0.3 to 0.6
0 to 0.2
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0
0.5 to 2.0
Phosphorus (P), % 0 to 0.025
0 to 0.1
Silicon (Si), % 0.25 to 1.0
0 to 0.010
Sulfur (S), % 0 to 0.010
0 to 0.1
Tin (Sn), % 0
6.0 to 8.0
Zinc (Zn), % 0
0 to 2.0