MakeItFrom.com
Menu (ESC)

EN 1.7386 Steel vs. C22600 Bronze

EN 1.7386 steel belongs to the iron alloys classification, while C22600 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.7386 steel and the bottom bar is C22600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 18 to 21
2.5 to 33
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
42
Shear Strength, MPa 340 to 410
220 to 320
Tensile Strength: Ultimate (UTS), MPa 550 to 670
330 to 570
Tensile Strength: Yield (Proof), MPa 240 to 440
270 to 490

Thermal Properties

Latent Heat of Fusion, J/g 270
200
Maximum Temperature: Mechanical, °C 600
170
Melting Completion (Liquidus), °C 1450
1040
Melting Onset (Solidus), °C 1410
1000
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 26
170
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
40
Electrical Conductivity: Equal Weight (Specific), % IACS 10
42

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
28
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 2.0
2.6
Embodied Energy, MJ/kg 28
42
Embodied Water, L/kg 88
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92 to 110
14 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 150 to 490
330 to 1070
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 20 to 24
11 to 18
Strength to Weight: Bending, points 19 to 22
12 to 18
Thermal Diffusivity, mm2/s 6.9
52
Thermal Shock Resistance, points 15 to 18
11 to 19

Alloy Composition

Aluminum (Al), % 0 to 0.040
0
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 8.0 to 10
0
Copper (Cu), % 0 to 0.3
86 to 89
Iron (Fe), % 86.8 to 90.5
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.9 to 1.1
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.25 to 1.0
0
Sulfur (S), % 0 to 0.010
0
Zinc (Zn), % 0
10.7 to 14
Residuals, % 0
0 to 0.2