MakeItFrom.com
Menu (ESC)

EN 1.7386 Steel vs. C33200 Brass

EN 1.7386 steel belongs to the iron alloys classification, while C33200 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.7386 steel and the bottom bar is C33200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 18 to 21
7.0 to 60
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 75
40
Shear Strength, MPa 340 to 410
240 to 300
Tensile Strength: Ultimate (UTS), MPa 550 to 670
320 to 520
Tensile Strength: Yield (Proof), MPa 240 to 440
110 to 450

Thermal Properties

Latent Heat of Fusion, J/g 270
170
Maximum Temperature: Mechanical, °C 600
130
Melting Completion (Liquidus), °C 1450
930
Melting Onset (Solidus), °C 1410
900
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 26
120
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
26
Electrical Conductivity: Equal Weight (Specific), % IACS 10
28

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
24
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 2.0
2.6
Embodied Energy, MJ/kg 28
44
Embodied Water, L/kg 88
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92 to 110
35 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 150 to 490
60 to 960
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 20 to 24
11 to 17
Strength to Weight: Bending, points 19 to 22
13 to 17
Thermal Diffusivity, mm2/s 6.9
37
Thermal Shock Resistance, points 15 to 18
11 to 17

Alloy Composition

Aluminum (Al), % 0 to 0.040
0
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 8.0 to 10
0
Copper (Cu), % 0 to 0.3
65 to 68
Iron (Fe), % 86.8 to 90.5
0 to 0.070
Lead (Pb), % 0
1.5 to 2.5
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.9 to 1.1
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.25 to 1.0
0
Sulfur (S), % 0 to 0.010
0
Zinc (Zn), % 0
29 to 33.5
Residuals, % 0
0 to 0.4