MakeItFrom.com
Menu (ESC)

EN 1.7386 Steel vs. C48500 Brass

EN 1.7386 steel belongs to the iron alloys classification, while C48500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.7386 steel and the bottom bar is C48500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 18 to 21
13 to 40
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 75
39
Shear Strength, MPa 340 to 410
250 to 300
Tensile Strength: Ultimate (UTS), MPa 550 to 670
400 to 500
Tensile Strength: Yield (Proof), MPa 240 to 440
160 to 320

Thermal Properties

Latent Heat of Fusion, J/g 270
170
Maximum Temperature: Mechanical, °C 600
120
Melting Completion (Liquidus), °C 1450
900
Melting Onset (Solidus), °C 1410
890
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 26
120
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
26
Electrical Conductivity: Equal Weight (Specific), % IACS 10
29

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
23
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 2.0
2.7
Embodied Energy, MJ/kg 28
46
Embodied Water, L/kg 88
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92 to 110
56 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 150 to 490
120 to 500
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 20 to 24
14 to 17
Strength to Weight: Bending, points 19 to 22
15 to 17
Thermal Diffusivity, mm2/s 6.9
38
Thermal Shock Resistance, points 15 to 18
13 to 17

Alloy Composition

Aluminum (Al), % 0 to 0.040
0
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 8.0 to 10
0
Copper (Cu), % 0 to 0.3
59 to 62
Iron (Fe), % 86.8 to 90.5
0 to 0.1
Lead (Pb), % 0
1.3 to 2.2
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.9 to 1.1
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.25 to 1.0
0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0.5 to 1.0
Zinc (Zn), % 0
34.3 to 39.2
Residuals, % 0
0 to 0.4