MakeItFrom.com
Menu (ESC)

EN 1.7386 Steel vs. C61800 Bronze

EN 1.7386 steel belongs to the iron alloys classification, while C61800 bronze belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.7386 steel and the bottom bar is C61800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 18 to 21
26
Fatigue Strength, MPa 170 to 290
190
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
44
Shear Strength, MPa 340 to 410
310
Tensile Strength: Ultimate (UTS), MPa 550 to 670
740
Tensile Strength: Yield (Proof), MPa 240 to 440
310

Thermal Properties

Latent Heat of Fusion, J/g 270
230
Maximum Temperature: Mechanical, °C 600
220
Melting Completion (Liquidus), °C 1450
1050
Melting Onset (Solidus), °C 1410
1040
Specific Heat Capacity, J/kg-K 480
440
Thermal Conductivity, W/m-K 26
64
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
13
Electrical Conductivity: Equal Weight (Specific), % IACS 10
14

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
28
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 2.0
3.1
Embodied Energy, MJ/kg 28
52
Embodied Water, L/kg 88
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92 to 110
150
Resilience: Unit (Modulus of Resilience), kJ/m3 150 to 490
420
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 20 to 24
25
Strength to Weight: Bending, points 19 to 22
22
Thermal Diffusivity, mm2/s 6.9
18
Thermal Shock Resistance, points 15 to 18
26

Alloy Composition

Aluminum (Al), % 0 to 0.040
8.5 to 11
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 8.0 to 10
0
Copper (Cu), % 0 to 0.3
86.9 to 91
Iron (Fe), % 86.8 to 90.5
0.5 to 1.5
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.9 to 1.1
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.25 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.010
0
Zinc (Zn), % 0
0 to 0.020
Residuals, % 0
0 to 0.5