MakeItFrom.com
Menu (ESC)

EN 1.7386 Steel vs. C96400 Copper-nickel

EN 1.7386 steel belongs to the iron alloys classification, while C96400 copper-nickel belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.7386 steel and the bottom bar is C96400 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
140
Elongation at Break, % 18 to 21
25
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
51
Tensile Strength: Ultimate (UTS), MPa 550 to 670
490
Tensile Strength: Yield (Proof), MPa 240 to 440
260

Thermal Properties

Latent Heat of Fusion, J/g 270
240
Maximum Temperature: Mechanical, °C 600
260
Melting Completion (Liquidus), °C 1450
1240
Melting Onset (Solidus), °C 1410
1170
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 26
28
Thermal Expansion, µm/m-K 13
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
5.0
Electrical Conductivity: Equal Weight (Specific), % IACS 10
5.1

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
45
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.0
5.9
Embodied Energy, MJ/kg 28
87
Embodied Water, L/kg 88
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92 to 110
100
Resilience: Unit (Modulus of Resilience), kJ/m3 150 to 490
250
Stiffness to Weight: Axial, points 14
8.6
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 20 to 24
15
Strength to Weight: Bending, points 19 to 22
16
Thermal Diffusivity, mm2/s 6.9
7.8
Thermal Shock Resistance, points 15 to 18
17

Alloy Composition

Aluminum (Al), % 0 to 0.040
0
Carbon (C), % 0.080 to 0.15
0 to 0.15
Chromium (Cr), % 8.0 to 10
0
Copper (Cu), % 0 to 0.3
62.3 to 71.3
Iron (Fe), % 86.8 to 90.5
0.25 to 1.5
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0.3 to 0.6
0 to 1.5
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0
28 to 32
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0 to 0.025
0 to 0.020
Silicon (Si), % 0.25 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.010
0 to 0.020
Residuals, % 0
0 to 0.5