MakeItFrom.com
Menu (ESC)

EN 1.7386 Steel vs. C99500 Copper

EN 1.7386 steel belongs to the iron alloys classification, while C99500 copper belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.7386 steel and the bottom bar is C99500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 18 to 21
13
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
45
Tensile Strength: Ultimate (UTS), MPa 550 to 670
540
Tensile Strength: Yield (Proof), MPa 240 to 440
310

Thermal Properties

Latent Heat of Fusion, J/g 270
240
Maximum Temperature: Mechanical, °C 600
210
Melting Completion (Liquidus), °C 1450
1090
Melting Onset (Solidus), °C 1410
1040
Specific Heat Capacity, J/kg-K 480
400
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
10
Electrical Conductivity: Equal Weight (Specific), % IACS 10
10

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
30
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 2.0
3.0
Embodied Energy, MJ/kg 28
47
Embodied Water, L/kg 88
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92 to 110
63
Resilience: Unit (Modulus of Resilience), kJ/m3 150 to 490
410
Stiffness to Weight: Axial, points 14
7.7
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 20 to 24
17
Strength to Weight: Bending, points 19 to 22
17
Thermal Shock Resistance, points 15 to 18
19

Alloy Composition

Aluminum (Al), % 0 to 0.040
0.5 to 2.0
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 8.0 to 10
0
Copper (Cu), % 0 to 0.3
82.5 to 92
Iron (Fe), % 86.8 to 90.5
3.0 to 5.0
Lead (Pb), % 0
0 to 0.25
Manganese (Mn), % 0.3 to 0.6
0 to 0.5
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0
3.5 to 5.5
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.25 to 1.0
0.5 to 2.0
Sulfur (S), % 0 to 0.010
0
Zinc (Zn), % 0
0.5 to 2.0
Residuals, % 0
0 to 0.3