MakeItFrom.com
Menu (ESC)

EN 1.7386 Steel vs. S40977 Stainless Steel

Both EN 1.7386 steel and S40977 stainless steel are iron alloys. They have a very high 97% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.7386 steel and the bottom bar is S40977 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 200
160
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 18 to 21
21
Fatigue Strength, MPa 170 to 290
200
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
76
Shear Strength, MPa 340 to 410
320
Tensile Strength: Ultimate (UTS), MPa 550 to 670
510
Tensile Strength: Yield (Proof), MPa 240 to 440
310

Thermal Properties

Latent Heat of Fusion, J/g 270
270
Maximum Temperature: Mechanical, °C 600
720
Melting Completion (Liquidus), °C 1450
1440
Melting Onset (Solidus), °C 1410
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 26
25
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 10
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
6.5
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.0
1.9
Embodied Energy, MJ/kg 28
27
Embodied Water, L/kg 88
97

Common Calculations

PREN (Pitting Resistance) 12
12
Resilience: Ultimate (Unit Rupture Work), MJ/m3 92 to 110
92
Resilience: Unit (Modulus of Resilience), kJ/m3 150 to 490
250
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 20 to 24
18
Strength to Weight: Bending, points 19 to 22
18
Thermal Diffusivity, mm2/s 6.9
6.7
Thermal Shock Resistance, points 15 to 18
18

Alloy Composition

Aluminum (Al), % 0 to 0.040
0
Carbon (C), % 0.080 to 0.15
0 to 0.030
Chromium (Cr), % 8.0 to 10
10.5 to 12.5
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 86.8 to 90.5
83.9 to 89.2
Manganese (Mn), % 0.3 to 0.6
0 to 1.5
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0
0.3 to 1.0
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0.25 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.015