MakeItFrom.com
Menu (ESC)

EN 1.7390 Steel vs. AISI 430F Stainless Steel

Both EN 1.7390 steel and AISI 430F stainless steel are iron alloys. They have 87% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.7390 steel and the bottom bar is AISI 430F stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
230
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 16
23
Fatigue Strength, MPa 310
210
Poisson's Ratio 0.29
0.28
Reduction in Area, % 50
50
Shear Modulus, GPa 74
77
Shear Strength, MPa 440
340
Tensile Strength: Ultimate (UTS), MPa 710
540
Tensile Strength: Yield (Proof), MPa 480
310

Thermal Properties

Latent Heat of Fusion, J/g 260
280
Maximum Temperature: Mechanical, °C 510
870
Melting Completion (Liquidus), °C 1460
1430
Melting Onset (Solidus), °C 1420
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 40
25
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 4.3
8.5
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 1.7
2.1
Embodied Energy, MJ/kg 23
29
Embodied Water, L/kg 69
120

Common Calculations

PREN (Pitting Resistance) 6.8
17
Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
110
Resilience: Unit (Modulus of Resilience), kJ/m3 600
250
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 25
20
Strength to Weight: Bending, points 23
19
Thermal Diffusivity, mm2/s 11
6.7
Thermal Shock Resistance, points 20
19

Alloy Composition

Carbon (C), % 0 to 0.18
0 to 0.12
Chromium (Cr), % 4.0 to 6.0
16 to 18
Iron (Fe), % 91.9 to 95.3
79.2 to 83.9
Manganese (Mn), % 0.3 to 0.8
0 to 1.3
Molybdenum (Mo), % 0.45 to 0.65
0
Phosphorus (P), % 0 to 0.025
0 to 0.060
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0 to 0.015
0.15 to 0.35