MakeItFrom.com
Menu (ESC)

EN 1.7390 Steel vs. AISI 439 Stainless Steel

Both EN 1.7390 steel and AISI 439 stainless steel are iron alloys. They have 86% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.7390 steel and the bottom bar is AISI 439 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
160
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 16
23
Fatigue Strength, MPa 310
170
Poisson's Ratio 0.29
0.28
Reduction in Area, % 50
51
Shear Modulus, GPa 74
77
Shear Strength, MPa 440
310
Tensile Strength: Ultimate (UTS), MPa 710
490
Tensile Strength: Yield (Proof), MPa 480
250

Thermal Properties

Latent Heat of Fusion, J/g 260
280
Maximum Temperature: Mechanical, °C 510
890
Melting Completion (Liquidus), °C 1460
1510
Melting Onset (Solidus), °C 1420
1430
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 40
25
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 4.3
9.0
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 1.7
2.3
Embodied Energy, MJ/kg 23
34
Embodied Water, L/kg 69
120

Common Calculations

PREN (Pitting Resistance) 6.8
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
95
Resilience: Unit (Modulus of Resilience), kJ/m3 600
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 25
18
Strength to Weight: Bending, points 23
18
Thermal Diffusivity, mm2/s 11
6.7
Thermal Shock Resistance, points 20
16

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Carbon (C), % 0 to 0.18
0 to 0.030
Chromium (Cr), % 4.0 to 6.0
17 to 19
Iron (Fe), % 91.9 to 95.3
77.1 to 82.8
Manganese (Mn), % 0.3 to 0.8
0 to 1.0
Molybdenum (Mo), % 0.45 to 0.65
0
Nickel (Ni), % 0
0 to 0.5
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0
0.2 to 1.1