MakeItFrom.com
Menu (ESC)

EN 1.7390 Steel vs. ASTM Grade LCA Steel

Both EN 1.7390 steel and ASTM grade LCA steel are iron alloys. Both are furnished in the normalized and tempered condition. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.7390 steel and the bottom bar is ASTM grade LCA steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 16
27
Fatigue Strength, MPa 310
170
Poisson's Ratio 0.29
0.29
Reduction in Area, % 50
40
Shear Modulus, GPa 74
72
Tensile Strength: Ultimate (UTS), MPa 710
500
Tensile Strength: Yield (Proof), MPa 480
230

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Maximum Temperature: Mechanical, °C 510
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
49
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 4.3
1.9
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.7
1.4
Embodied Energy, MJ/kg 23
19
Embodied Water, L/kg 69
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
110
Resilience: Unit (Modulus of Resilience), kJ/m3 600
150
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 25
18
Strength to Weight: Bending, points 23
18
Thermal Diffusivity, mm2/s 11
14
Thermal Shock Resistance, points 20
16

Alloy Composition

Carbon (C), % 0 to 0.18
0 to 0.25
Chromium (Cr), % 4.0 to 6.0
0
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 91.9 to 95.3
96.9 to 100
Manganese (Mn), % 0.3 to 0.8
0 to 0.7
Molybdenum (Mo), % 0.45 to 0.65
0 to 0.2
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 0.6
Sulfur (S), % 0 to 0.015
0 to 0.045
Residuals, % 0
0 to 1.0