MakeItFrom.com
Menu (ESC)

EN 1.7390 Steel vs. EN 1.4630 Stainless Steel

Both EN 1.7390 steel and EN 1.4630 stainless steel are iron alloys. They have 88% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.7390 steel and the bottom bar is EN 1.4630 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 16
23
Fatigue Strength, MPa 310
170
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
76
Shear Strength, MPa 440
300
Tensile Strength: Ultimate (UTS), MPa 710
480
Tensile Strength: Yield (Proof), MPa 480
250

Thermal Properties

Latent Heat of Fusion, J/g 260
290
Maximum Temperature: Mechanical, °C 510
800
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1420
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 40
28
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 4.3
9.5
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 1.7
2.5
Embodied Energy, MJ/kg 23
36
Embodied Water, L/kg 69
120

Common Calculations

PREN (Pitting Resistance) 6.8
15
Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
92
Resilience: Unit (Modulus of Resilience), kJ/m3 600
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 25
17
Strength to Weight: Bending, points 23
18
Thermal Diffusivity, mm2/s 11
7.5
Thermal Shock Resistance, points 20
17

Alloy Composition

Aluminum (Al), % 0
0 to 1.5
Carbon (C), % 0 to 0.18
0 to 0.030
Chromium (Cr), % 4.0 to 6.0
13 to 16
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 91.9 to 95.3
77.1 to 86.7
Manganese (Mn), % 0.3 to 0.8
0 to 1.0
Molybdenum (Mo), % 0.45 to 0.65
0 to 0.5
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0 to 0.5
Phosphorus (P), % 0 to 0.025
0 to 0.050
Silicon (Si), % 0 to 0.4
0.2 to 1.5
Sulfur (S), % 0 to 0.015
0 to 0.050
Titanium (Ti), % 0
0.15 to 0.8