MakeItFrom.com
Menu (ESC)

EN 1.7390 Steel vs. EN 1.7383 Steel

Both EN 1.7390 steel and EN 1.7383 steel are iron alloys. They have a very high 97% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.7390 steel and the bottom bar is EN 1.7383 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
170 to 180
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 16
20 to 23
Fatigue Strength, MPa 310
210 to 270
Impact Strength: V-Notched Charpy, J 46
38
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 74
74
Shear Strength, MPa 440
350 to 380
Tensile Strength: Ultimate (UTS), MPa 710
560 to 610
Tensile Strength: Yield (Proof), MPa 480
300 to 400

Thermal Properties

Latent Heat of Fusion, J/g 260
260
Maximum Temperature: Mechanical, °C 510
460
Melting Completion (Liquidus), °C 1460
1470
Melting Onset (Solidus), °C 1420
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
39
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 4.3
3.9
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.7
1.8
Embodied Energy, MJ/kg 23
23
Embodied Water, L/kg 69
59

Common Calculations

PREN (Pitting Resistance) 6.8
5.6
Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
110
Resilience: Unit (Modulus of Resilience), kJ/m3 600
240 to 420
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 25
20 to 22
Strength to Weight: Bending, points 23
19 to 20
Thermal Diffusivity, mm2/s 11
11
Thermal Shock Resistance, points 20
16 to 18

Alloy Composition

Aluminum (Al), % 0
0 to 0.040
Carbon (C), % 0 to 0.18
0.080 to 0.15
Chromium (Cr), % 4.0 to 6.0
2.0 to 2.5
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 91.9 to 95.3
94.3 to 96.6
Manganese (Mn), % 0.3 to 0.8
0.4 to 0.8
Molybdenum (Mo), % 0.45 to 0.65
0.9 to 1.1
Nickel (Ni), % 0
0 to 0.3
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0 to 0.4
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.010