MakeItFrom.com
Menu (ESC)

EN 1.7703 Steel vs. EN 1.4958 Stainless Steel

Both EN 1.7703 steel and EN 1.4958 stainless steel are iron alloys. They have 49% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.7703 steel and the bottom bar is EN 1.4958 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 20
40
Fatigue Strength, MPa 320 to 340
170
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
77
Shear Strength, MPa 420 to 430
430
Tensile Strength: Ultimate (UTS), MPa 670 to 690
630
Tensile Strength: Yield (Proof), MPa 460 to 500
190

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 460
1090
Melting Completion (Liquidus), °C 1470
1400
Melting Onset (Solidus), °C 1430
1350
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 39
12
Thermal Expansion, µm/m-K 13
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 4.2
30
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 2.5
5.3
Embodied Energy, MJ/kg 35
75
Embodied Water, L/kg 61
200

Common Calculations

PREN (Pitting Resistance) 5.6
21
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 130
190
Resilience: Unit (Modulus of Resilience), kJ/m3 570 to 650
95
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 24
22
Strength to Weight: Bending, points 22
20
Thermal Diffusivity, mm2/s 11
3.2
Thermal Shock Resistance, points 19 to 20
15

Alloy Composition

Aluminum (Al), % 0
0.2 to 0.5
Carbon (C), % 0.11 to 0.15
0.030 to 0.080
Chromium (Cr), % 2.0 to 2.5
19 to 22
Cobalt (Co), % 0
0 to 0.5
Copper (Cu), % 0 to 0.2
0 to 0.5
Iron (Fe), % 94.6 to 96.4
41.1 to 50.6
Manganese (Mn), % 0.3 to 0.6
0 to 1.5
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.25
30 to 32.5
Niobium (Nb), % 0 to 0.070
0 to 0.1
Nitrogen (N), % 0 to 0.012
0 to 0.030
Phosphorus (P), % 0 to 0.015
0 to 0.015
Silicon (Si), % 0 to 0.1
0 to 0.7
Sulfur (S), % 0 to 0.0050
0 to 0.010
Titanium (Ti), % 0 to 0.030
0.2 to 0.5
Vanadium (V), % 0.25 to 0.35
0