MakeItFrom.com
Menu (ESC)

EN 1.7703 Steel vs. EN 1.5682 Steel

Both EN 1.7703 steel and EN 1.5682 steel are iron alloys. They have a moderately high 91% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.7703 steel and the bottom bar is EN 1.5682 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 210
230
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 20
21
Fatigue Strength, MPa 320 to 340
400
Impact Strength: V-Notched Charpy, J 46
68
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 74
72
Shear Strength, MPa 420 to 430
480
Tensile Strength: Ultimate (UTS), MPa 670 to 690
770
Tensile Strength: Yield (Proof), MPa 460 to 500
570

Thermal Properties

Latent Heat of Fusion, J/g 250
260
Maximum Temperature: Mechanical, °C 460
430
Melting Completion (Liquidus), °C 1470
1450
Melting Onset (Solidus), °C 1430
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
8.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
9.8

Otherwise Unclassified Properties

Base Metal Price, % relative 4.2
7.5
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 2.5
2.3
Embodied Energy, MJ/kg 35
31
Embodied Water, L/kg 61
63

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 130
150
Resilience: Unit (Modulus of Resilience), kJ/m3 570 to 650
870
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 24
27
Strength to Weight: Bending, points 22
23
Thermal Shock Resistance, points 19 to 20
23

Alloy Composition

Carbon (C), % 0.11 to 0.15
0 to 0.13
Chromium (Cr), % 2.0 to 2.5
0
Copper (Cu), % 0 to 0.2
0 to 0.3
Iron (Fe), % 94.6 to 96.4
88.7 to 91.1
Manganese (Mn), % 0.3 to 0.6
0.3 to 0.8
Molybdenum (Mo), % 0.9 to 1.1
0 to 0.1
Nickel (Ni), % 0 to 0.25
8.5 to 9.5
Niobium (Nb), % 0 to 0.070
0
Nitrogen (N), % 0 to 0.012
0
Phosphorus (P), % 0 to 0.015
0 to 0.020
Silicon (Si), % 0 to 0.1
0.15 to 0.35
Sulfur (S), % 0 to 0.0050
0 to 0.0050
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0.25 to 0.35
0 to 0.050