MakeItFrom.com
Menu (ESC)

EN 1.7703 Steel vs. EN AC-51500 Aluminum

EN 1.7703 steel belongs to the iron alloys classification, while EN AC-51500 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.7703 steel and the bottom bar is EN AC-51500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 210
80
Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 20
5.6
Fatigue Strength, MPa 320 to 340
120
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
26
Tensile Strength: Ultimate (UTS), MPa 670 to 690
280
Tensile Strength: Yield (Proof), MPa 460 to 500
160

Thermal Properties

Latent Heat of Fusion, J/g 250
430
Maximum Temperature: Mechanical, °C 460
170
Melting Completion (Liquidus), °C 1470
630
Melting Onset (Solidus), °C 1430
590
Specific Heat Capacity, J/kg-K 470
910
Thermal Conductivity, W/m-K 39
120
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
26
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
88

Otherwise Unclassified Properties

Base Metal Price, % relative 4.2
9.5
Density, g/cm3 7.9
2.6
Embodied Carbon, kg CO2/kg material 2.5
9.0
Embodied Energy, MJ/kg 35
150
Embodied Water, L/kg 61
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 130
13
Resilience: Unit (Modulus of Resilience), kJ/m3 570 to 650
190
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
52
Strength to Weight: Axial, points 24
29
Strength to Weight: Bending, points 22
36
Thermal Diffusivity, mm2/s 11
49
Thermal Shock Resistance, points 19 to 20
13

Alloy Composition

Aluminum (Al), % 0
89.8 to 93.1
Carbon (C), % 0.11 to 0.15
0
Chromium (Cr), % 2.0 to 2.5
0
Copper (Cu), % 0 to 0.2
0 to 0.050
Iron (Fe), % 94.6 to 96.4
0 to 0.25
Magnesium (Mg), % 0
4.7 to 6.0
Manganese (Mn), % 0.3 to 0.6
0.4 to 0.8
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.25
0
Niobium (Nb), % 0 to 0.070
0
Nitrogen (N), % 0 to 0.012
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.1
1.8 to 2.6
Sulfur (S), % 0 to 0.0050
0
Titanium (Ti), % 0 to 0.030
0 to 0.25
Vanadium (V), % 0.25 to 0.35
0
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.15