MakeItFrom.com
Menu (ESC)

EN 1.7703 Steel vs. C11300 Copper

EN 1.7703 steel belongs to the iron alloys classification, while C11300 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.7703 steel and the bottom bar is C11300 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 20
2.3 to 50
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
43
Shear Strength, MPa 420 to 430
160 to 240
Tensile Strength: Ultimate (UTS), MPa 670 to 690
230 to 410
Tensile Strength: Yield (Proof), MPa 460 to 500
77 to 400

Thermal Properties

Latent Heat of Fusion, J/g 250
210
Maximum Temperature: Mechanical, °C 460
200
Melting Completion (Liquidus), °C 1470
1080
Melting Onset (Solidus), °C 1430
1030
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 39
390
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
100
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
100

Otherwise Unclassified Properties

Base Metal Price, % relative 4.2
32
Density, g/cm3 7.9
9.0
Embodied Carbon, kg CO2/kg material 2.5
2.6
Embodied Energy, MJ/kg 35
42
Embodied Water, L/kg 61
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 130
8.5 to 91
Resilience: Unit (Modulus of Resilience), kJ/m3 570 to 650
25 to 690
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 24
7.2 to 13
Strength to Weight: Bending, points 22
9.4 to 14
Thermal Diffusivity, mm2/s 11
110
Thermal Shock Resistance, points 19 to 20
8.2 to 15

Alloy Composition

Carbon (C), % 0.11 to 0.15
0
Chromium (Cr), % 2.0 to 2.5
0
Copper (Cu), % 0 to 0.2
99.85 to 99.973
Iron (Fe), % 94.6 to 96.4
0
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.25
0
Niobium (Nb), % 0 to 0.070
0
Nitrogen (N), % 0 to 0.012
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.1
0
Silver (Ag), % 0
0.027 to 0.050
Sulfur (S), % 0 to 0.0050
0
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0.25 to 0.35
0
Residuals, % 0
0 to 0.1