MakeItFrom.com
Menu (ESC)

EN 1.7703 Steel vs. C17465 Copper

EN 1.7703 steel belongs to the iron alloys classification, while C17465 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.7703 steel and the bottom bar is C17465 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 20
5.3 to 36
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
44
Shear Strength, MPa 420 to 430
210 to 540
Tensile Strength: Ultimate (UTS), MPa 670 to 690
310 to 930
Tensile Strength: Yield (Proof), MPa 460 to 500
120 to 830

Thermal Properties

Latent Heat of Fusion, J/g 250
210
Maximum Temperature: Mechanical, °C 460
210
Melting Completion (Liquidus), °C 1470
1080
Melting Onset (Solidus), °C 1430
1030
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 39
220
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
22 to 51
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
23 to 52

Otherwise Unclassified Properties

Base Metal Price, % relative 4.2
45
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 2.5
4.1
Embodied Energy, MJ/kg 35
64
Embodied Water, L/kg 61
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 130
47 to 90
Resilience: Unit (Modulus of Resilience), kJ/m3 570 to 650
64 to 2920
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 24
9.7 to 29
Strength to Weight: Bending, points 22
11 to 24
Thermal Diffusivity, mm2/s 11
64
Thermal Shock Resistance, points 19 to 20
11 to 33

Alloy Composition

Aluminum (Al), % 0
0 to 0.2
Beryllium (Be), % 0
0.15 to 0.5
Carbon (C), % 0.11 to 0.15
0
Chromium (Cr), % 2.0 to 2.5
0
Copper (Cu), % 0 to 0.2
95.7 to 98.7
Iron (Fe), % 94.6 to 96.4
0 to 0.2
Lead (Pb), % 0
0.2 to 0.6
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.25
1.0 to 1.4
Niobium (Nb), % 0 to 0.070
0
Nitrogen (N), % 0 to 0.012
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.1
0 to 0.2
Sulfur (S), % 0 to 0.0050
0
Tin (Sn), % 0
0 to 0.25
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0.25 to 0.35
0
Zirconium (Zr), % 0
0 to 0.5
Residuals, % 0
0 to 0.5