MakeItFrom.com
Menu (ESC)

EN 1.7703 Steel vs. C19400 Copper

EN 1.7703 steel belongs to the iron alloys classification, while C19400 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.7703 steel and the bottom bar is C19400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 20
2.3 to 37
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
44
Shear Strength, MPa 420 to 430
210 to 300
Tensile Strength: Ultimate (UTS), MPa 670 to 690
310 to 630
Tensile Strength: Yield (Proof), MPa 460 to 500
98 to 520

Thermal Properties

Latent Heat of Fusion, J/g 250
210
Maximum Temperature: Mechanical, °C 460
200
Melting Completion (Liquidus), °C 1470
1090
Melting Onset (Solidus), °C 1430
1080
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 39
260
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
58 to 68
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
58 to 69

Otherwise Unclassified Properties

Base Metal Price, % relative 4.2
30
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 2.5
2.6
Embodied Energy, MJ/kg 35
40
Embodied Water, L/kg 61
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 130
5.5 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 570 to 650
41 to 1140
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 24
9.7 to 20
Strength to Weight: Bending, points 22
11 to 18
Thermal Diffusivity, mm2/s 11
75
Thermal Shock Resistance, points 19 to 20
11 to 22

Alloy Composition

Carbon (C), % 0.11 to 0.15
0
Chromium (Cr), % 2.0 to 2.5
0
Copper (Cu), % 0 to 0.2
96.8 to 97.8
Iron (Fe), % 94.6 to 96.4
2.1 to 2.6
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.25
0
Niobium (Nb), % 0 to 0.070
0
Nitrogen (N), % 0 to 0.012
0
Phosphorus (P), % 0 to 0.015
0.015 to 0.15
Silicon (Si), % 0 to 0.1
0
Sulfur (S), % 0 to 0.0050
0
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0.25 to 0.35
0
Zinc (Zn), % 0
0.050 to 0.2
Residuals, % 0
0 to 0.2