MakeItFrom.com
Menu (ESC)

EN 1.7703 Steel vs. C51100 Bronze

EN 1.7703 steel belongs to the iron alloys classification, while C51100 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.7703 steel and the bottom bar is C51100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 20
2.5 to 50
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
42
Shear Strength, MPa 420 to 430
230 to 410
Tensile Strength: Ultimate (UTS), MPa 670 to 690
330 to 720
Tensile Strength: Yield (Proof), MPa 460 to 500
93 to 700

Thermal Properties

Latent Heat of Fusion, J/g 250
200
Maximum Temperature: Mechanical, °C 460
190
Melting Completion (Liquidus), °C 1470
1060
Melting Onset (Solidus), °C 1430
970
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 39
84
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
20
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
20

Otherwise Unclassified Properties

Base Metal Price, % relative 4.2
32
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 2.5
3.0
Embodied Energy, MJ/kg 35
48
Embodied Water, L/kg 61
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 130
18 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 570 to 650
38 to 2170
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 24
10 to 22
Strength to Weight: Bending, points 22
12 to 20
Thermal Diffusivity, mm2/s 11
25
Thermal Shock Resistance, points 19 to 20
12 to 26

Alloy Composition

Carbon (C), % 0.11 to 0.15
0
Chromium (Cr), % 2.0 to 2.5
0
Copper (Cu), % 0 to 0.2
93.8 to 96.5
Iron (Fe), % 94.6 to 96.4
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.25
0
Niobium (Nb), % 0 to 0.070
0
Nitrogen (N), % 0 to 0.012
0
Phosphorus (P), % 0 to 0.015
0.030 to 0.35
Silicon (Si), % 0 to 0.1
0
Sulfur (S), % 0 to 0.0050
0
Tin (Sn), % 0
3.5 to 4.9
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0.25 to 0.35
0
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.5