MakeItFrom.com
Menu (ESC)

EN 1.7703 Steel vs. N06110 Nickel

EN 1.7703 steel belongs to the iron alloys classification, while N06110 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.7703 steel and the bottom bar is N06110 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 20
53
Fatigue Strength, MPa 320 to 340
320
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
84
Shear Strength, MPa 420 to 430
530
Tensile Strength: Ultimate (UTS), MPa 670 to 690
730
Tensile Strength: Yield (Proof), MPa 460 to 500
330

Thermal Properties

Latent Heat of Fusion, J/g 250
340
Maximum Temperature: Mechanical, °C 460
1020
Melting Completion (Liquidus), °C 1470
1490
Melting Onset (Solidus), °C 1430
1440
Specific Heat Capacity, J/kg-K 470
440
Thermal Expansion, µm/m-K 13
12

Otherwise Unclassified Properties

Base Metal Price, % relative 4.2
65
Density, g/cm3 7.9
8.6
Embodied Carbon, kg CO2/kg material 2.5
11
Embodied Energy, MJ/kg 35
160
Embodied Water, L/kg 61
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 130
320
Resilience: Unit (Modulus of Resilience), kJ/m3 570 to 650
260
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
23
Strength to Weight: Axial, points 24
23
Strength to Weight: Bending, points 22
21
Thermal Shock Resistance, points 19 to 20
20

Alloy Composition

Aluminum (Al), % 0
0 to 1.0
Carbon (C), % 0.11 to 0.15
0 to 0.15
Chromium (Cr), % 2.0 to 2.5
28 to 33
Copper (Cu), % 0 to 0.2
0 to 0.5
Iron (Fe), % 94.6 to 96.4
0 to 1.0
Manganese (Mn), % 0.3 to 0.6
0 to 1.0
Molybdenum (Mo), % 0.9 to 1.1
9.0 to 12
Nickel (Ni), % 0 to 0.25
51 to 62
Niobium (Nb), % 0 to 0.070
0 to 1.0
Nitrogen (N), % 0 to 0.012
0
Phosphorus (P), % 0 to 0.015
0 to 0.5
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0 to 0.0050
0 to 0.015
Titanium (Ti), % 0 to 0.030
0 to 1.0
Tungsten (W), % 0
1.0 to 4.0
Vanadium (V), % 0.25 to 0.35
0