MakeItFrom.com
Menu (ESC)

EN 1.7703 Steel vs. N08925 Stainless Steel

Both EN 1.7703 steel and N08925 stainless steel are iron alloys. They have 50% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.7703 steel and the bottom bar is N08925 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 20
45
Fatigue Strength, MPa 320 to 340
310
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
80
Shear Strength, MPa 420 to 430
470
Tensile Strength: Ultimate (UTS), MPa 670 to 690
680
Tensile Strength: Yield (Proof), MPa 460 to 500
340

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 460
1100
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1430
1410
Specific Heat Capacity, J/kg-K 470
460
Thermal Conductivity, W/m-K 39
13
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 4.2
33
Density, g/cm3 7.9
8.1
Embodied Carbon, kg CO2/kg material 2.5
6.2
Embodied Energy, MJ/kg 35
84
Embodied Water, L/kg 61
200

Common Calculations

PREN (Pitting Resistance) 5.6
44
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 130
250
Resilience: Unit (Modulus of Resilience), kJ/m3 570 to 650
280
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 24
23
Strength to Weight: Bending, points 22
21
Thermal Diffusivity, mm2/s 11
3.5
Thermal Shock Resistance, points 19 to 20
15

Alloy Composition

Carbon (C), % 0.11 to 0.15
0 to 0.020
Chromium (Cr), % 2.0 to 2.5
19 to 21
Copper (Cu), % 0 to 0.2
0.8 to 1.5
Iron (Fe), % 94.6 to 96.4
42.7 to 50.1
Manganese (Mn), % 0.3 to 0.6
0 to 1.0
Molybdenum (Mo), % 0.9 to 1.1
6.0 to 7.0
Nickel (Ni), % 0 to 0.25
24 to 26
Niobium (Nb), % 0 to 0.070
0
Nitrogen (N), % 0 to 0.012
0.1 to 0.2
Phosphorus (P), % 0 to 0.015
0 to 0.045
Silicon (Si), % 0 to 0.1
0 to 0.5
Sulfur (S), % 0 to 0.0050
0 to 0.030
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0.25 to 0.35
0