MakeItFrom.com
Menu (ESC)

EN 1.7703 Steel vs. R30155 Cobalt

Both EN 1.7703 steel and R30155 cobalt are iron alloys. They have a modest 34% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.7703 steel and the bottom bar is R30155 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 210
220
Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 20
34
Fatigue Strength, MPa 320 to 340
310
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 74
81
Shear Strength, MPa 420 to 430
570
Tensile Strength: Ultimate (UTS), MPa 670 to 690
850
Tensile Strength: Yield (Proof), MPa 460 to 500
390

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 460
1100
Melting Completion (Liquidus), °C 1470
1470
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 470
450
Thermal Conductivity, W/m-K 39
12
Thermal Expansion, µm/m-K 13
14

Otherwise Unclassified Properties

Base Metal Price, % relative 4.2
80
Density, g/cm3 7.9
8.5
Embodied Carbon, kg CO2/kg material 2.5
9.7
Embodied Energy, MJ/kg 35
150
Embodied Water, L/kg 61
300

Common Calculations

PREN (Pitting Resistance) 5.6
37
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 130
230
Resilience: Unit (Modulus of Resilience), kJ/m3 570 to 650
370
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
23
Strength to Weight: Axial, points 24
28
Strength to Weight: Bending, points 22
24
Thermal Diffusivity, mm2/s 11
3.2
Thermal Shock Resistance, points 19 to 20
21

Alloy Composition

Carbon (C), % 0.11 to 0.15
0.080 to 0.16
Chromium (Cr), % 2.0 to 2.5
20 to 22.5
Cobalt (Co), % 0
18.5 to 21
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 94.6 to 96.4
24.3 to 36.2
Manganese (Mn), % 0.3 to 0.6
1.0 to 2.0
Molybdenum (Mo), % 0.9 to 1.1
2.5 to 3.5
Nickel (Ni), % 0 to 0.25
19 to 21
Niobium (Nb), % 0 to 0.070
0.75 to 1.3
Nitrogen (N), % 0 to 0.012
0 to 0.2
Phosphorus (P), % 0 to 0.015
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0 to 0.0050
0 to 0.030
Tantalum (Ta), % 0
0.75 to 1.3
Titanium (Ti), % 0 to 0.030
0
Tungsten (W), % 0
2.0 to 3.0
Vanadium (V), % 0.25 to 0.35
0