MakeItFrom.com
Menu (ESC)

EN 1.7703 Steel vs. S35315 Stainless Steel

Both EN 1.7703 steel and S35315 stainless steel are iron alloys. They have 40% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.7703 steel and the bottom bar is S35315 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 210
190
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 20
46
Fatigue Strength, MPa 320 to 340
280
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
78
Shear Strength, MPa 420 to 430
520
Tensile Strength: Ultimate (UTS), MPa 670 to 690
740
Tensile Strength: Yield (Proof), MPa 460 to 500
300

Thermal Properties

Latent Heat of Fusion, J/g 250
330
Maximum Temperature: Mechanical, °C 460
1100
Melting Completion (Liquidus), °C 1470
1370
Melting Onset (Solidus), °C 1430
1330
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 39
12
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 4.2
34
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 2.5
5.7
Embodied Energy, MJ/kg 35
81
Embodied Water, L/kg 61
220

Common Calculations

PREN (Pitting Resistance) 5.6
27
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 130
270
Resilience: Unit (Modulus of Resilience), kJ/m3 570 to 650
230
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 24
26
Strength to Weight: Bending, points 22
23
Thermal Diffusivity, mm2/s 11
3.1
Thermal Shock Resistance, points 19 to 20
17

Alloy Composition

Carbon (C), % 0.11 to 0.15
0.040 to 0.080
Cerium (Ce), % 0
0.030 to 0.1
Chromium (Cr), % 2.0 to 2.5
24 to 26
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 94.6 to 96.4
33.6 to 40.6
Manganese (Mn), % 0.3 to 0.6
0 to 2.0
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.25
34 to 36
Niobium (Nb), % 0 to 0.070
0
Nitrogen (N), % 0 to 0.012
0.12 to 0.18
Phosphorus (P), % 0 to 0.015
0 to 0.040
Silicon (Si), % 0 to 0.1
1.2 to 2.0
Sulfur (S), % 0 to 0.0050
0 to 0.030
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0.25 to 0.35
0