MakeItFrom.com
Menu (ESC)

EN 1.7706 Steel vs. ACI-ASTM CT15C Steel

Both EN 1.7706 steel and ACI-ASTM CT15C steel are iron alloys. They have 47% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.7706 steel and the bottom bar is ACI-ASTM CT15C steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
140
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 17
23
Fatigue Strength, MPa 330
130
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Tensile Strength: Ultimate (UTS), MPa 690
500
Tensile Strength: Yield (Proof), MPa 500
190

Thermal Properties

Latent Heat of Fusion, J/g 260
310
Maximum Temperature: Mechanical, °C 440
1080
Melting Completion (Liquidus), °C 1470
1410
Melting Onset (Solidus), °C 1430
1360
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
12
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 3.7
36
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 2.3
6.1
Embodied Energy, MJ/kg 32
88
Embodied Water, L/kg 57
190

Common Calculations

PREN (Pitting Resistance) 4.7
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
90
Resilience: Unit (Modulus of Resilience), kJ/m3 670
93
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 24
17
Strength to Weight: Bending, points 22
17
Thermal Diffusivity, mm2/s 11
3.2
Thermal Shock Resistance, points 20
12

Alloy Composition

Carbon (C), % 0.15 to 0.2
0.050 to 0.15
Chromium (Cr), % 1.2 to 1.5
19 to 21
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 94.7 to 97.1
40.3 to 49.2
Manganese (Mn), % 0.5 to 0.9
0.15 to 1.5
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.4
31 to 34
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0 to 0.020
0 to 0.030
Silicon (Si), % 0 to 0.6
0.15 to 1.5
Sulfur (S), % 0 to 0.015
0 to 0.030
Vanadium (V), % 0.2 to 0.3
0